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In the Hohenberg and Kohn formation of the density-functional theory of an electronic sys- 
tem, the basic variable is the electron (number) density. This quantity, however, is not known. 
For this reason, in an actual calculation, one has to resort to an approximate electron (num- 
ber) density in order to evaluate the integral occurring in the Hohenberg and Kohn density- 
functional framework. This poses the question: what is the accuracy beyond which one cannot 
penetrate in the numerical evaluation of the integrals? The present work attempts to provide 
an answer to this question by considering the Ne atom as an example and using the simplest 
energy-density functional, namely the Thomas-Fermi functional. In this functional, composed 
of three terms, there is only one term, the kinetic-energy functional, that has to be evaluated 
numerically. The evaluation of this integral is done by modeling the electron (number) density 
of the Ne atom and resorting to Simpson's compound rule. Following this, an error bound for 
the integral is established. This is the central result of this paper. 

1. I n t r o d u c t i o n  

In the Hohenberg  and Kohn  [1] formulat ion of  density-functional theory, the 
(nondegenerate)  ground-state  energy of  an electronic system, such as an atom, or a 
molecule, is a unique functional of  the respective electron (number) density. This 
quanti ty,  however,  is not  known so, in a particular calculation, one has to resort  to 
an approximat ion  to the electron (number) density. In a previous work  [2], the 
au thor  used the T h o m a s - F e r m i  (TF) energy-density functional [3] and carried out  
variat ional  calculations of  the total a tomic binding energy using the Ne  a tom as 
an example. In the work  mentioned, the electron (number) density of  the Ne  a tom is 
modeled  by using hydrogen-like one-electron wave functions (with the 2s radial 
funct ion or thogonal ized to the 1 s radial function). In the T F  energy-density func- 
t ional [3] the kinetic-energy functional can only be evaluated by resorting to numer-  
ical integration. The integration technique used in ref. [2] is the compound  
Simpson's  rule [4]. In applying this rule, the integration interval is divided into a 
number  of  equal subintervals (or panels) and Simpson's  (three-point rule) is 
applied to each. The numerical  integration raises a question: what  is the at tainable 
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accuracy beyond which one cannot penetrate? An investigation of this question is 
the purpose of the present work. 

This paper is organized as follows: in section 2, the theoretical framework of 
ref. [2] is briefly outlined. In section 3, the error estimate of the numerical integra- 
tion is presented. 

All quantities used in the present work are expressed in atomic units (the unit 
of energy is the hartree, the unit of length is the bohr). 

2. Theoretical f ramework 

The TF total-energy functional [3] of an atom is the sum of three terms: the 
kinetic-energy functional, the functional describing the (attractive) interaction of 
the electrons with the atomic nucleus, and the functional describing the classical (or 
the direct) part of the (repulsive) interaction among the electrons. One can then 
write 

ETF[p] = E:F[p] -b Ene[p] + Eee[p], (1) 

where p is the electron (number) density, and the superscript and subscripts have 
obvious meanings. It is seen from eq. (1), that it reflects the spirit of the Hohenberg 
and Kohn [1 ] formulation of density-functional theory. 

The TF kinetic-energy functional, for an atom of spherically symmetric electron 
distribution, such as the Ne atom, is given [3] by 

E~'F[p] = 3(3rc2)2/3 p5/3 4rcr 2 dr. (2) 

The functional describing the (attractive) interaction of the N electrons of an 
atom with the nucleus of atomic number (n is given [3] by 

/0 EneLO] = - Vnp4~r z dr,  (3) 

where 

Vn -= ~n/r (4) 

is the potential of the nucleus with r denoting the distance from the atomic 
nucleus. For a neutral atom, such as the Ne atom considered in this work, one has 
N = ( n  = 10. 

The functional describing the classical (or direct) part of the (repulsive) interac- 
tion among the N electrons is, in general, described [3] by 

Eee[p] = I / f p(r)p(#__(.) d r d / ,  (5) 
J Ir - ,q  

where p(r) dr and p(r') d / a r e  the charges contained in volume elements dr and 
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dr', respectively, and [r - r'[ is the distance between the volume elements. The fac- 
tor 1 / 2 occurs to avoid double counting. 

Equation (5) can also be written [3] as 

]? Eee[p] = -½ Vep 41tr 2 dr, (6) 

where Ve denotes the potential of the N electrons. This quantity, upon making a 
choice for p, is determined from Poisson's equation 

d 2 
dr--- 5 (r Ve) = 47tpr (7) 

by integrating it twice with the boundary condition 

r V e - + - N  as r-~cx:~. (8) 

The next step is the making of a choice for the electron (number) density. In pre- 
vious calculations of the author [2] this choice was made in such a way that the elec- 
tron (number) density (1) is finite at the atomic nucleus, (2) exhibits an 
exponential decay with the distance from the nucleus, and (3) its associated radial 
electron (number) density, 

D = 4rcr2p, (9) 

exhibits the extrema associated with the shell structure of an atom. 
For the Ne atom of electron configuration (ls)Z(2s)Z(2p) 6, the electron (num- 

ber) density is constructed [2] as 

p = 2pls + 2p2s q- 2p2p+, + 2p2p0 + P2p_~ , (10) 

where the subscripts refer to the respective hydrogen-like densities. Substitution 
of the one-electron wave functions [5] into eq. (10) leads to 

1 
p = ~ [2Rls(Z1) 2 q-2~2s(Z1,  Z2) 2 -Jr- 6R2p(Z3)2] • (11) 

In eq. (11), the quantities Rl~ (Z1) and R2p(Z3) denote the normalized radial parts 
of hydrogen-like wave functions, namely [5] 

Rls(Z1) = 2Z~/2e -z~r (12) 

and 

1 ,..3/21Z rX_Z3r/2 R2p(Z3) = ~--~L 3 k 3 )~ • (13) 

In eq. (11), the (script) function J~2s(Z1, Z2) is obtained from an unnormalized 
hydrogen-like 2s radial wave function, namely from [5] 

R~(Z2) = ( 2 -  Z2r)e -z~'/2 (14) 
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that is orthogonalized by the Gram-Schmidt procedure [6] to an unnormalized 
hydrogen-like 1 s radial wave function, namely to [5] 

R~s (21) = e  - z ' r  . (15) 

The result of the Gram-Schmidt procedure [6] is #1 

22s (Z1, Z:) = N[R~ (Z2) + 5£Rls (Z1)], (16) 

where the (script) constants N and K are obtained from the integrals #2 

j~0 c~ ~]~2s (Zl, Z2)2F 2 dr 1, (17) 

and 

~oo °e R l s ( Z l ) ~ 2 s ( Z l ,  = (18) Z2)r 2 dr 0. 

For the sake of completeness, it is mentioned here that eqs. (17) and (18) lead to 
the quantities 

Nc = [8Zf 3 _ K2]-1/2 (19) 

and 

(. 
-- - \ ( z l  + ½z ) (20) 

(Equations (19) and (20) were not displayed in ref. [2]). 
It is important to realize that the orthogonalization of the radial 2s function to 

the radial 1 s function permits the introduction of different variational parameters 
for the 1 s and 2s electrons [7]. 

Using eq. (11), ETtV[p] in eq. (1) has been minimized with respect to the para- 
meters Z1, Z2, and Z3. The minimization has been carried out by numerical integra- 
tion based on Simpson's compound rule [4]. An integration interval from 0 to 8 
bohr was found to be satisfactory, subdivided into M = 2048 equal subintervals (or 
panels). The minimizing values of the variational parameters Z1, Z2, and Z3, 
values of the normalization and orthogonalization constants N and ~ ,  and the 
value of kinetic energy are listed in table 1. 

At this point, it is convenient to rewrite eq. (2) as 

L 
B=8 

g ( r ) d r ,  (21) 
= =o 

#1 In ref. [2], due to a notational oversight, the function R2~(Z2) appears in ~2s(Zl, Z2). The correct 
quantity is R~(Z2), where the superscript un stands for unnormalized. All calculations, however, 
were done with the correct expression for 9~2~ (Zl, Z2). 

#2Equation (18) can also be expressed by J( = - f o  R~n( Z2 ) Rls( ZI ) rz dr. 
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Table 1 
Minimizing values of the variational parameters ZI, Z2, and Z3, values of the normalization and 
orthogonalization constants N and X, and the value of the kinetic energy Ek. The last column is a 
cheek on the virial theorem, given [3] by VT = (Ene + E~)/Ek = -2 .  

Zl Z2 Z3 N 3( Ek(au) VT 

10.52 2.34 6.63 1.2803 -0.1196 128.91 -2.0004 

where the integrand is given by 

g(r) = r 2 [2Rls (Z1)2 + 2J~2s (Z1, Z2) 2 + 6R2p (Z3)215/3. (22) 

It is known from calculus that the remainder associated with the integral in eq. 
(21) is given [41 by 

(B - A )  5 (4"1 e i - ,  

RM - i-8-~- ~ g" "~;); A <~ < B ,  (23) 

where the superscript on g refers to the fourth derivative of g. With g defined in 
eq. (22), the fourth derivative can be calculated analytically. 

The central question is: what is the attainable accuracy of the numerical integra- 
tion by Simpson's compound rule? For this technique, the maximum error is given 
[4] by 

(B-A)' IEI max Ig(a)(r)[. (24) 
A <~r<<.B 

To investigate the quantity max lg (4)(r)[, a successively refined tabulation of 
[g(4) (r) l has been carried out in the interval A ~< r ~< B. It was found that Ig (4) (r) l has 
several maxima (and minima, of no interest here). The maxima are tabulated in 
table 2. The maximum of [g(4) I at x = 0 is included in table 2 only for the sake of 
completeness. The remainder, as defined in eq. (23), does not include the limit. 
What  does one conclude then from table 2? The most pessimistic conclusion is that 
the integral in eq. (21) cannot be obtained to an accuracy greater than 
2.566 x 10 -4. This conclusion, of course, pertains to the case o f M  = 2048. A dou- 
bling of the number of subintervals (or panels) would introduce a factor of 1 / 16, 
that would lead to an attainable accuracy of 1.604 x 10 -5 in the most pessimistic 
case. In density-functional theory, one would rarely desire such an accuracy. As to 
the other maxima of [g(4) (r) l in table 2, no problem arises. They permit much smal- 
ler errors than an error of the order of 10 -4. 

In rounding out the present discussions, one more point should be brought out. 
There is also a roundoff error I RI. In practice, the roundoff error is usually negligi- 
ble [8] but with high speed computers there is the temptation to use a very large 
number of subintervals. The use of a very large value for M may take the roundoff 
error out of the negligible category. 
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Table 2 
Maxima of Ig(4)(r)[ as a function of r in the A <~r<~B interval. The last column gives the error [El, 
as defined in eq. (24). 

r (au) max[g (4)(r)l IEI 

0 6.264123 x 10 l° 6.482 x 10 -l 
0.202930 2.479880 × 107 2.566 × 10 -4 
0.692266 3.776076 × 104 3.907 × 10 -7 
2.776234 1.586347 × 10 ° 1.642 × 10 -ll 
3.977615 1.90853 × 10 -1 1.975 × 10 -12 

In closing it is, perhaps appropriate to quote Davis and Rabinowitz [8]: "error 
analysis is the tithe that intelligence demands of action, but it is rarely paid." 
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